Как работают языковые модели Хабр
При «нулевой» температуре модель всегда выбирает токен с максимальной оценкой правдоподобия, что приводит к полному отсутствию разнообразия в результатах, но гарантирует, что мы всегда получаем самое качественное продолжение по оценке модели. Языковая модель назначает оценки правдоподобия для прогнозирования следующего токена в последовательности. Для начала важно ознакомиться с общими принципами работы языковых моделей. Если вам когда-либо приходилось использовать языковую модель в интерактивной среде или через API, то скорее всего ваша работа начиналась с выбора нескольких входных параметров.
Методы генерации и выборки: создание связного текста
- В настоящее время этот вариант искусственного интеллекта лежит в основе чат-ботов, которые набирают беспрецедентную популярность в различных сферах, как в развлекательной индустрии, так и в медицине, образовании, финансовой аналитике.
- Если вы будете решать задачи правильно, я засуну руки в ваш мозг и буду возиться с вашими нейронными проводами, чтобы повысить вероятность того, что в будущем вы будете делать это снова.
- Аттрактор — это состояние или набор состояний, к которым система имеет тенденцию эволюционировать и оставаться стабильной, когда она там окажется.
- Это естественная практика — даже в профессиональных дискуссиях о моделях участники могут увлечься интересной деталью и потерять основную цель обсуждения.
- Такой подход с использованием элемента случайности может быть полезным в работе чат-ботов и в ряде других случаев.
В более общем смысле, показатели семантических переменных, таких как тональность, могут использоваться для сопоставления последовательности с координатами фазового пространства. Вы даже можете использовать саму генеративную языковую модель, например, создав список бинарных вопросов[3] о состоянии и сопоставив состояния с координатами, используя вероятность ответов модели на каждый вопрос[4]. Можно даже присвоить виртуальному собеседнику профессиональный профиль — например, “Дмитрий, специалист по генерации текста”. Такой подход помогает естественно структурировать входные данные и улучшать качество обучения модели. Тем не менее, в ходе этой сложной процедуры могут возникать ошибки, когда модель генерирует избыточную информацию или пытается использовать еще не обработанные данные. Устранение таких ошибок и оптимизация вычислений являются неотъемлемой частью Level-2 reasoning, что подчеркивает необходимость совершенствования моделей для достижения более точных и надежных результатов. Большие языковые модели (LLM) — это результат объединения методов глубинного обучения и работы с текстовыми данными. В отличие от специализированных моделей машинного обучения, которые решают узкий круг задач, LLM применяются для работы с текстом, предсказывая последующие слова в предложении. Вы также можете создавать профили для разных аудиторий, учитывая особенности обучения модели для каждого случая. Например, технический специалист потребует других параметров генерации, чем неподготовленный пользователь. Обращайте внимание не только на генерацию текста, но и на то, как модель это делает, какие ошибки допускает при обучении и где достигает своих пределов. Все эти детали помогут вам расширить горизонты работы с языковыми моделями. Например, Mistal 7B умеет решать несколько задач параллельно и отлично работает в чатботах. При настройке контрольных точек важно создать детальное описание задачи и учитывать скорость обучения. Если у используемой языковой модели имеются дополнительные параметры, не указанные выше, оставьте их значения по умолчанию. Низкая температура означает более высокое качество, а высокая температура – увеличение разнообразия.
Few-shot обучение
Языковые модели используют глубокие нейронные сети для построения текста, обучаясь на миллиардных объемах данных, чтобы обрабатывать естественный язык. Hugging Face размещает общедоступные языковые модели, с помощью которых разработчики могут создавать приложения с использованием машинного обучения. Нейронные языковые модели (или языковые модели с непрерывным пространством) используют непрерывные представления или вложения слов для своих прогнозов[12]. Простую https://aihealthalliance.org модель можно построить с нуля самостоятельно, но чаще используют уже готовые — BERT, GPT и другие. Их адаптируют под конкретную задачу, но структура и принцип работы остаются неизменными. Он поддерживает знакомый API, позволяя пользователям использовать такие функции, как .fit(), .fit_transform()и .predict(). Его способность интегрировать оценщики в конвейер Sklearn иллюстрирует его гибкость, что делает его благом для тех, кто хочет улучшить свои проекты машинного обучения за счет современного понимания языка. Его важным свойством является авторегрессионное предсказание следующего токена на основе языковой каузальности. Это функционально напоминает рекуррентную нейронную сеть (RNN), но с менее сложной операцией обратного распространения ошибки. https://ru.doramatv.video/user/SEO-Bible/ Если вы будете решать задачи правильно, я засуну руки в ваш мозг и буду возиться с вашими нейронными проводами, чтобы повысить вероятность того, что в будущем вы будете делать это снова. Если вы ошибётесь, я снова буду возиться, но на этот раз постараюсь сделать так, чтобы вы больше так не делали. Упаковано с последними достижениями в области искусственного интеллекта, веб-разработки и технологий будущего. Будущее языковых моделей таит в себе огромные возможности для прорывов и приложений. Не ограничивая общность, предположим, что, согласно некоторым предпочтениям, асессоры или пользователи установили, что первый ответ лучше второго. Few-shot действительно полезен и помогает получать от модели нужный результат без обучения, но всё же недостаточно хорошо. LLM применяются для автоматической генерации текстов, от новостных статей до маркетинговых материалов. Такие модели облегчают помогает копирайтерам и редакторам работать эффективнее, предлагая черновики текстов или даже создавая полные статьи. С их помощью компании могут автоматизировать создание описаний товаров, рекламных материалов и даже публикаций в социальных сетях, снижая затраты на контент. Чтобы понять, как работают языковые модели, начнём с ключевых понятий и общих принципов, на которых они построены. На следующем этапе, называемом инструкционной настройкой, модель учится отвечать на запросы, имитируя поведение помощника. Для этого она обучается на специально отобранных парах «инструкция-ответ», которые помогают ей развивать способность следовать указаниям пользователя, а не просто продолжать текст. https://xn——pmcnc1cq0jcocfk73o.com/user/aeo-rocket Как правило, нейронносетевые языковые модели строятся и обучаются как вероятностные классификаторы, которые учатся предсказывать распределение вероятностей. Языковые модели, в частности BERT и GPT, — «золотой стандарт» для задач распознавания естественного языка, или NLP. Основная задача, как обычно, следовать некой политике, которая лучшим образом отражает human feedback. Политика — наша итоговая модель, value-функция оценивает средний reward в текущем состоянии (обычно это та же самая модель с линейным слоем поверх). Существуют также техники ускорения обучения моделей и оптимизации использования памяти, но с этим предлагаем читателям ознакомиться самостоятельно. Так как в учебнике рассматривался лишь базовая архитектура трансформеров, то опишем, что в ней необходимо изменить, чтобы получить LLaMa-модель. Получается, что можно оптимизировать подводку, или, другими словами, находить наиболее оптимальный промт, который лучше прочих решает поставленную задачу.